Sequence-Level Mechanisms of Human Epigenome Evolution

نویسندگان

  • James G.D. Prendergast
  • Emily V. Chambers
  • Colin A.M. Semple
چکیده

DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explorer Sequence level mechanisms of human epigenome evolution

Publisher Rights Statement: © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the origi...

متن کامل

Evolution of Epigenetic Regulation in Vertebrate Genomes.

Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain ...

متن کامل

EGO: A Biomedical Ontology for Integrative Epigenome Representation and Analysis

Epigenomics is crucial to understand biological mechanisms beyond genome DNA. To better represent epigenomic knowledge and support data integration, we developed a prototype Epigenome Ontology (EGO). EGO top level hierarchy and design pattern are provided with a use case illustration. EGO is proposed to be used for statistically analyzing enriched epigenomic features based on given sequence dat...

متن کامل

Social life, evolution of intelligence, behaviour and human brain size

Social life is one of the most critical factors of the evolution of the behavior of non-human primates and humans. Several factors, such as an increase in brain size, adaptive modules, and grooming, are related to the complexities of social groups. Although some scientists have mentioned foraging as a rival hypothesis for the evolution of behavior, in this research, we tried to investigate the ...

متن کامل

Spermatozoa Molecules in Relation to Bulls Fertility

Bull fertility may be defined as the process by which spermatozoa fertilize and activate the ovum and then support embryonic development. Bull fertility is a complex trait having relatively low heritability and plays a vital role for efficient production and reproduction of bovine. Various mechanisms involved in regulating bull fertility associated phenotype and reliable biomarkers are poorly d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014